Компьютерная техника, радиоэлектроника, электрика

Пятница Июль 20, 2018
  • Register

Каждый измерительный прибор имеет определенные ограничения, кото­рые нужно принимать во внимание, чтобы при использовании этого при­бора получить правильное значение измеряемой величины. Введение из­мерительного прибора в электрическую схему может нарушить ее нор­мальную работу. Поэтому первое правило использования измерительных устройств — обеспечение таких условий измерения, при которых это вмешательство незначительно и им можно пренебречь. Важнейшей характе­ристикой измерительного прибора является его собственное сопротивле­ние, называемое внутренним сопротивлением (рис. 37.1).

 Измерительный прибор в цепи

Рис. 37.1. Базовый измерительный     Рис. 37.2. Включение амперметра                                     прибор.                                                                              А для измерения тока I в цепи.

 
Измерение тока

Чтобы измерить ток в цепи, нужно разомкнуть эту цепь в подходящем ме­сте и в место разрыва последовательно включить амперметр А (рис. 37.2). Амперметр может быть включен в любом месте цепи при условии, что че­рез него будет протекать весь измеряемый ток.

Высококачественные амперметры имеют малое внутреннее сопроти­вление, благодаря чему они оказывают очень слабое влияние на измеря­емый электрический ток. Амперметры с большими внутренними сопро­тивлениями дают неточные показания.

 

Измерение напряжения

Напряжение, или разность потенциалов, существует между двумя точка­ми в цепи. Чтобы измерить напряжение, вольтметр включается между этими двумя точками, например между выводами резистора, без разрыва цепи. Как показано на рис. 37.3, вольтметр V1 измеряет падение напря­жения на резисторе R1, а вольтметр V2 на резисторе R2.

Измерение напряжения

Рис. 37.3. Измерение напряжения.

Рис. 37.4.  Эффект нагрузки – часть общего тока,

ток Im, ответвля­ется в вольтметр.


Эффект нагрузки

Как видно из рис. 37.4, внутреннее сопротивление вольтметра шунтиру­ет сопротивление участка цепи R, к которому подключается вольтметр. Часть тока, протекавшая до подключения вольтметра через R, теперь от­ветвляется к вольтметру. Другими словами, для полного тока I эффек­тивное сопротивление резистора R, зашунтированного теперь внутренним сопротивлением вольтметра, уменьшается. Это так называемый эффект нагрузки вольтметра. Для ослабления этого эффекта внутреннее сопро­тивление вольтметра делают максимально большим, так чтобы оно, по меньшей мере, в 20 раз превышало сопротивление нагрузки. При таких соотношениях шунтирующим эффектом сопротивления измерительного прибора можно пренебречь.

Внутреннее сопротивление

Внутреннее сопротивление измерительного прибора зависит от его чув­ствительности и выбранного диапазона (предела) измерений. Его мож­но вычислить исходя из чувствительности, которую указывают в омах на вольт (Ом/В). Например, вольтметр с чувствительностью 1000 Ом/В имеет внутреннее сопротивление

1000 · 1 = 1000 Ом в диапазоне измерений до 1 В,

1000 · 3 = 3000 Ом в диапазоне измерений до 3 В,

1000 · 10 = 10000 Ом в диапазоне измерений до 10 В и т. д.

При заданной чувствительности, чем больший диапазон измерений вы­бирается, тем больше внутреннее сопротивление и больше точность.


Пример 1

На рис. 37.5 показаны два одинаковых вольтметра V1 и V2 с чувствительностью 20000 Ом/В. Какой вольтметр даст более точные показания, если оба прибора работают в диапазоне измерений 10В?

r37.5

Рис. 37.5.

Решение

Внутреннее сопротивление каждого прибора равно 20000 · 10 = 200000 Ом, или 200 кОм. Вольтметр V1 шунтирует резистор R2 с сопротивлением 10 кОм, т е. сопротивление этого измерительного прибора в 20 раз превышает сопротивле­ние резистора R2, следовательно, вольтметр V1 даст точное показание (т. е. 4,5 В). Вольтметр V2, шунтирует резистор R4, сопротивление которого равно внутреннему сопротивлению вольтметра 200 кОм. В результате эффект нагруз­ки для вольтметра V2 будет значительным, что приведет к ошибочному показа­нию (3 В).

 

Аналоговые и цифровые измерительные приборы

Аналоговые измерительные приборы, такие, как магнитоэлектрические измерительные приборы с подвижной катушкой и осциллографы, обес­печивают непрерывную индикацию величин напряжения, тока и т. п. Цифровые измерительные приборы отображают показания дискретным образом. Они обеспечивают непосредственное считывание значений изме­ряемой величины, не зависящее от человеческих ошибок, не имеют дви­жущихся частей, меньше по размерам и дешевле по сравнению с анало­говыми измерительными приборами.

Типы измерительных приборов

Приборы с подвижной катушкой

Магнитоэлектрический измерительный прибор с подвижной катушкой указывает величину постоянного тока, протекающего через катушку. Его можно использовать и для проведения измерений на переменном токе, подключив ко входу выпрямитель. Приборы этого типа имеют чувстви­тельность порядка 20 кОм/В для постоянного тока и 600 Ом/В для пе­ременного тока, частотный диапазон измерений — до 2 кГц или немного больше.

Электронный вольтметр 

Это, по существу, магнитоэлектрический измерительный прибор с по­движной катушкой, но с усилителем на входе. Чувствительность достига­ет порядка мегаом на вольт как для постоянного, так и для переменного токов, частотный диапазон измерений — 3 МГц и выше.

Цифровой вольтметр 

Цифровой вольтметр имеет очень высокую чувствительность (измеряе­мую в мегаомах на вольт) и очень широкий частотный диапазон (свыше 2 МГц).

Электронно-лучевой осциллограф 

Кроме того, что на экране электронно-лучевого осциллографа можно уви­деть форму электрического сигнала, с его помощью можно также изме­рить самые различные электрические величины: напряжение (среднее и пиковое), период, разность фаз и время задержки. Входное сопротивле­ние осциллографа порядка 1 МОм, чувствительность и частотный диапа­зон измерений такие же, как у электронного и цифрового вольтметров.

Универсальный измерительный прибор (мультиметр)

Это, по существу, тот же вольтметр, но сочетающий в себе несколько из­мерительных функций. Коммутирующее устройство переключает функ­ции и позволяет использовать этот прибор как амперметр, вольтметр и омметр. Это может быть аналоговый (с подвижной катушкой) или ци­фровой прибор.

Осциллограф 

Осциллограф можно использовать также для определения частоты. Пе­риод t отображаемого сигнала измеряется с помощью откалиброванной по длительности развертки, а затем частота вычисляется по формуле f = 1/t. Этот метод применим как для синусоидального, так и для пери­одического сигнала любой другой формы.

Более точный метод определения частоты синусоидального сигнала заключается в сравнении его частоты с известной эталонной частотой. Для этого выключается внутренний генератор развертки осциллографа, и сигнал известной частоты (вырабатываемый генератором эталонной ча­стоты) подается на одну пару отклоняющих пластин, а сигнал измеряе­мой частоты — на другую. Плавно изменяя частоту эталонного генератора, добиваются появления на экране устойчивых изображений, называ­емых фигурами Лиссажу (рис. 37.6). Неизвестную частоту можно опре­делить, подсчитывая число пиков (максимумов) на изображении. Если неизвестная частота fY подается на Y-пластины, а известная частота fX на X-пластины, то в тех случаях, когда возникают только горизонтальные пики, как на рис. 37.6, имеем

Неизвестная частота fY = Известная частота fX  · Число пиков.

r37.6

Рис. 37.6.

Измерительные приборы для регистрации логических состояний

Рассмотренные в предыдущем разделе устройства измеряют аналоговые величины. Для проверки логического состояния контрольной точки ну­жен логический пробник (рис. 37.7). При касании щупом пробника контрольной точки (или узла) индицируется логическое состояние узла: «1», «0» или состояние разомкнутой цепи.

Логический пробник

Рис. 37.7. TTL – ТТЛ; CMOS – КМОП; Н — высокий уровень; L — низкий уровень.

Индикация осуществляется с по­мощью индикатора на одном или двух светодиодах. Для изменения логи­ческого состояния узла используется логический импульсный генератор. При касании узла щупом генератора логическое состояние этого узла из­меняется на противоположное. Если узел находился в состоянии логиче­ской 1, то он переключается в состояние логического 0, и наоборот. Логи­ческий импульсный генератор обычно применяется вместе с логическим пробником для контроля логических элементов, счетчиков, триггеров и других цифровых устройств.

Еще один очень полезный логический измерительный прибор — токо­вый детектор. Если токовый детектор поднести к проводнику на печат­ной плате, то он укажет наличие или отсутствие пульсирующего тока в проводнике. Электрический контакт с проводником не нужен. Токовый детектор применяется вместе с импульсным генератором для обнаруже­ния короткого замыкания между проводником или выводом какого-либо элемента, с одной стороны, и землей или шиной источника питания — с другой. Этот детектор можно также применять для поиска коротких замыканий между проводниками или выводами элементов.

Логический и сигнатурный анализаторы

Логический пробник и другие приборы, определяющие логическое состо­яние схемы, практически не применяются при тестировании микропро­цессорных систем. В системе с шинной организацией информация о ло­гическом состоянии отдельной линии шины недостаточна для адекватно­го контроля системы. Необходима одновременная проверка логических уровней на всех линиях адресной шины или шины данных. Это можно сделать с помощью многоканального логического анализатора (индика­тора логических состояний), который позволяет одновременно контроли­ровать большое количество входов. Альтернативным методом тестиро­вания микропроцессорной системы является регистрация последователь­ности битов, появляющихся в одной контрольной точке, с последующим сравнением этой последовательности с аналогичной последовательностью в хорошо работающей известной системе. Этот метод контроля основан на применении одновходового сигнатурного анализатора.

В данном видео рассказывается о стрелочном мультиметре:

Добавить комментарий


Защитный код
Обновить