Компьютерная техника, радиоэлектроника, электрика

Среда Сентябрь 19, 2018
  • Register

Существуют два метода тестирования для диагностики неисправности электронной системы, устройства или печатной платы: функциональный контроль и внутрисхемный контроль. Функциональный контроль обеспе­чивает проверку работы тестируемого модуля, а внутрисхемный контроль состоит в проверке отдельных элементов этого модуля с целью выяснения их номиналов, полярности включения и т. п. Обычно оба этих метода при­меняются последовательно. С разработкой аппаратуры автоматического контроля появилась возможность очень быстрого внутрисхемного кон­троля с индивидуальной проверкой каждого элемента печатной платы, включая транзисторы, логические элементы и счетчики. Функциональ­ный контроль также перешел на новый качественный уровень благодаря применению методов компьютерной обработки данных и компьютерного контроля. Что же касается самих принципов поиска неисправностей, то они совершенно одинаковы, независимо от того, осуществляется ли про­верка вручную или автоматически.

Поиск неисправности должен проводиться в определенной логической последовательности, цель которой — выяснить причину неисправности и затем устранить ее. Число проводимых операций следует сводить к минимуму, избегая необязательных или бессмысленных проверок. Пре­жде чем проверять неисправную схему, нужно тщательно осмотреть ее для возможного обнаружения явных дефектов: перегоревших элементов, разрывов проводников на печатной плате и т. п. Этому следует уделять не более двух-трех минут, с приобретением опыта такой визуальный кон­троль будет выполняться интуитивно. Если осмотр ничего не дал, можно перейти к процедуре поиска неисправности.

В первую очередь выполняется функциональный тест: проверяется работа платы и делается попытка определить неисправный блок и по­дозреваемый неисправный элемент. Прежде чем заменять неисправный элемент, нужно провести внутрисхемное измерение параметров этого эле­мента, для того чтобы убедиться в его неисправности.

Функциональные тесты

Функциональные тесты можно разбить на два класса, или серии. Тесты серии 1, называемые динамическими тестами, применяются к законченному электронному устройству для выделения неисправного каскада или блока. Когда найден конкретный блок, с которым связана неисправность, применяются тесты серии 2, или статические тесты, для определения одного или двух, возможно, неисправных элементов (резисторов, конден­саторов и т. п.).

Динамические тесты

Это первый набор тестов, выполняемых при поиске неисправности в элек­тронном устройстве. Поиск неисправности должен вестись в направлении от выхода устройства к его входу по методу деления пополам. Суть этого метода заключается в следующем. Сначала вся схема устройства де­лится на две секции: входную и выходную. На вход выходной секции подается сигнал, аналогичный сигналу, который в нормальных условиях действует в точке разбиения. Если при этом на выходе получается нор­мальный сигнал, значит, неисправность должна находиться во входной секции. Эта входная секция делится на две подсекции, и повторяется предыдущая процедура. И так до тех пор, пока неисправность не будет локализована в наименьшем функционально отличимом каскаде, напри­мер в выходном каскаде, видеоусилителе или усилителе ПЧ, делителе частоты, дешифраторе или отдельном логическом элементе.

Пример 1. Радиоприемник (рис. 38.1)

Самым подходящим первым делением схемы радиоприемника является деление на ЗЧ-секпию и ПЧ/РЧ-секцию. Сначала проверяется ЗЧ-секция: на ее вход (регулятор громкости) подается сигнал с частотой 1 кГц через разделительный конденсатор (10-50 мкФ). Слабый или искаженный сигнал, а также его полное отсутствие указывают на неисправность ЗЧ-секции. Делим теперь эту секцию на две подсекции: выходной каскад и предусилитель. Каждая подсекция прове­ряется, начиная с выхода. Если же ЗЧ-секция исправна, то из громкоговорителя должен быть слышен чистый тональный сигнал (1 кГц). В этом случае неис­правность нужно искать внутри ПЧ/РЧ-секции.

Блок схема радиоприемника

Рис. 38.1.

 

Очень быстро убедиться в исправности или неисправности ЗЧ-секции мож­но с помощью так называемого «отверточного» теста. Прикоснитесь концом отвертки к входным зажимам ЗЧ-секции (предварительно установив регулятор громкости на максимальную громкость). Если эта секция исправна, будет отче­тливо слышно гудение громкоговорителя.

Если установлено, что неисправность находится внутри ПЧ/РЧ-секции, сле­дует разделить ее на две подсекции: ПЧ-секцию и РЧ-секцию. Сначала прове­ряется ПЧ-секция: на ее вход, т. е. на базу транзистора первого УПЧ подается амплитудно-модулированный (AM) сигнал с частотой 470 кГц1 через раздели­тельный конденсатор емкостью 0,01-0,1 мкФ. Для ЧМ-приемников требуется частотно-модулированный (ЧМ) тестовый сигнал с частотой 10,7 МГц. Если ПЧ-секция исправна, в громкоговорителе будет прослушиваться чистый тональный сигнал (400-600 Гц). В противном случае следует продолжить процедуру разбиения ПЧ-секции, пока не будет найден неисправный каскад, например УПЧ или детектор.

Если неисправность находится внутри РЧ-секции, то эта секция по возмож­ности разбивается на две подсекции и проверяется следующим образом. АМ-сигнал с частотой 1000 кГц подается на вход каскада через разделительный конденсатор емкостью 0,01-0,1 мкФ. Приемник настраивается на прием радио­сигнала с частотой 1000 кГц, или длиной волны 300 м в средневолновом диапа­зоне. В случае ЧМ-приемника, естественно, требуется тестовый сигнал другой частоты.

Можно воспользоваться и альтернативным методом проверки — методом покаскадной проверки прохождения сигнала. Радиоприемник включается и на­страивается на какую-либо станцию. Затем, начиная от выхода устройства, с по­мощью осциллографа проверяется наличие или отсутствие сигнала в контроль­ных точках, а также соответствие его формы и амплитуды требуемым критериям для исправной системы. При поиске неисправности в каком-либо другом элек­тронном устройстве на вход этого устройства подается номинальный сигнал.

Рассмотренные принципы динамических тестов можно применить к любому электронному устройству при условии правильного разбиения системы и подбора параметров тестовых сигналов.

Пример 2. Цифровой делитель частоты и дисплей (рис. 38.2) 

Как видно из рисунка, первый тест выполняется в точке, где схема делится при­близительно на две равные части. Для изменения логического состояния сигна­ла на входе блока 4 применяется генератор импульсов. Светоизлучающий диод (СИД) на выходе должен изменять свое состояние, если фиксатор, усилитель и СИД исправны. Далее поиск неисправности следует продолжить в делителях, предшествующих блоку 4. Повторяется та же самая процедура с использовани­ем генератора импульсов, пока не будет определен неисправный делитель. Если СИД не изменяет свое состояние в первом тесте, то неисправность находится в блоках 4, 5 или 6. Тогда сигнал генератора импульсов следует подавать на вход усилителя и т. д.

Цифровой делитель частоты и дисплей

Рис. 38.2.

Принципы статических тестов

Эта серия тестов применяется для определения дефектного элемента в каскаде, неисправность которого установлена на предыдущем этапе про­верок.

1. Начать с проверки статических режимов. Использовать вольтметр с чувствительностью не ниже 20 кОм/В.

2. Измерять только напряжение. Если требуется определить величину тока, вычислить его, измерив, падение напряжения на резисторе из­вестного номинала.

3. Если измерения на постоянном токе не выявили причину неисправно­сти, то тогда и только тогда перейти к динамическому тестированию неисправного каскада.

Проведение тестирования однокаскадного усилителя (рис. 38.3)

Обычно номинальные значения постоянных напряжений в контрольных точках каскада известны. Если нет, их всегда можно оценить с прие­млемой точностью. Сравнив реальные измеренные напряжения с их но­минальными значениями, можно найти дефектный элемент. В первую очередь определяется статический режим транзистора. Здесь возможны три варианта.

1. Транзистор находится в состоянии отсечки, не вырабатывая никакого выходного сигнала, или в состоянии, близком к отсечке («уходит» в область отсечки в динамическом режиме).

2. Транзистор находится в состоянии насыщения, вырабатывая слабый искаженный выходной сигнал, или в состоянии, близком к насыщению («уходит» в область насыщения в динамическом режиме).

$11.      Транзистор в нормальном статическом режиме.

Рисунок 38.3

Рис. 38.3. Номинальные напряжения:

Ve= 1,1 В, Vb = 1,72 В, Vc = 6,37В.

Рис. 38.4.  Обрыв резистора R3, транзистор

находится в состоянии отсечки: Ve = 0,3 В,

Vb = 0,94 В, Vc = 0,3В.

После того как установлен реальный режим работы транзистора, вы­ясняется причина отсечки или насыщения. Если транзистор работает в нормальном статическом режиме, неисправность связана с прохождением переменного сигнала (такая неисправность будет обсуждаться позже).

Отсечка

Режим отсечки транзистора, т. е. прекращение протекания тока, имеет место, когда а) переход база-эмиттер транзистора имеет нулевое напря­жение смещения или б) разрывается путь протекания тока, а именно: при обрыве (перегорании) резистора R3 или резистора R4 или когда не­исправен сам транзистор. Обычно, когда транзистор находится в состо­янии отсечки, напряжение на коллекторе равно напряжению источника питания VCC. Однако при обрыве резистора R3 коллектор «плавает» и теоретически должен иметь потенциал базы. Если подключить вольт­метр для измерения напряжения на коллекторе, переход база-коллектор попадает в условия прямого смещения, как видно из рис. 38.4. По це­пи «резистор R1 переход база-коллектор — вольтметр» потечет ток, и вольметр покажет небольшую величину напряжения. Это показание полностью связано с внутренним сопротивлением вольтметра.

Аналогично, когда отсечка вызвана обрывом резистора R4, «плавает» эмиттер транзистора, который теоретически должен иметь потенциал ба­зы. Если подключить вольтметр для измерения напряжения на эмиттере, образуется цепь протекания тока с прямым смещением перехода база-эмиттер. В результате вольтметр покажет напряжение, немного большее номинального напряжения на эмиттере (рис. 38.5).

В табл. 38.1 подытоживаются рассмотренные выше неисправности.

r38.5

Рис. 38.5.  Обрыв резистора R4, транзистор

находится в состоянии отсечки:

Ve = 1,25 В, Vb = 1,74 В, Vc = 10 В.

Рис. 38.6. Короткое замыкание пе­рехода

база-эмиттер, транзистор на­ходится в

состоянии отсечки: Ve = 0,48 В, Vb= 0,48 В, Vc = 10 В.

Отметим, что термин «высокое VBE»означает превышение нормального напряжения прямого смещения эмиттерного перехода на 0,1 – 0,2 В.

Неисправность транзистора также создает условия отсечки. Напря­жения в контрольных точках зависят в этом случае от природы неис­правности и номиналов элементов схемы. Например, короткое замыкание эмиттерного перехода (рис. 38.6) приводит к отсечке тока транзистора и параллельному соединению резисторов R2 и R4. В результате потенци­ал базы и эмиттера уменьшается до величины, определяемой делителем напряжения R1 R2 || R4.

Таблица 38.1. Условия отсечки

Неисправность

Причина

  1. 1.                  Ve 

 Vb             

 Vc

  VBE

0

0

Vac 

0

Обрыв резистора R1

  1. Ve 

 Vb             

 Vc

  VBE

Высокое Нормальное

VCC Низкое

Обрыв резистора R4

  1. Ve 

 Vb             

 Vc

  VBE

Низкое

 Низкое

Низкое

Нормальное

Обрыв резистора R3


Потенциал коллектора при этом, очевидно, ра­вен VCC. На рис. 38.7 рассмотрен случай короткого замыкания между коллектором и эмиттером.

Другие случаи неисправности транзистора приведены в табл. 38.2.

Короткое замыкание между коллектором и эмиттером

Рис. 38.7. Короткое замыкание между коллектором и эмиттером, транзистор находится в состоянии отсечки: Ve = 2,29 В, Vb = 1,77 В, Vc = 2,29 В.

Таблица 38.2

Неисправность

Причина

  1. Ve 

 Vb             

 Vc

  VBE

0 Нормальное

VCC

Очень высокое, не может быть выдержано функционирующим pn-переходом

Разрыв перехода база-эмиттер

  1. Ve 

 Vb             

 Vc

  VBE

Низкое Низкое

VCC Нормальное

Разрыв перехода база-коллектор

 

Насыщение

Как объяснялось в гл. 21, ток транзистора определяется напряжением прямого смещения перехода база-эмиттер. Небольшое увеличение этого напряжения приводит к сильному возрастанию тока транзистора. Ко­гда ток через транзистор достигает максимальной величины, говорят, что транзистор насыщен (находится в состоянии насыщения). Потенциал

Таблица 38.3

Неисправность

Причина

  1. 1.         Ve 

 Vb             

             Vc

Высокое (Vc)

Высокое

Низкое

Обрыв резистора R2 или мало сопротивление резистора R1

  1. Ve 

 Vb             

             Vc

0

Низкое

Очень низкое

Короткое замыкание конденсатора C3

коллектора уменьшается при увеличении тока и при достижении насыще­ния практически сравнивается с потенциалом эмиттера (0,1 – 0,5 В). Вооб­ще, при насыщении потенциалы эмиттера, базы и коллектора находятся приблизительно на одинаковом уровне                    (см. табл. 38.3).

Нормальный статический режим

Совпадение измеренных и номинальных постоянных напряжений и от­сутствие или низкий уровень сигнала на выходе усилителя указывают на неисправность, связанную с прохождением переменного сигнала, на­пример на внутренний обрыв в разделительном конденсаторе. Прежде чем заменять подозреваемый на обрыв конденсатор, убедитесь в его неис­правности, подключая параллельно ему исправный конденсатор близкого номинала. Обрыв развязывающего конденсатора в цепи эмиттера (C3 в схеме на рис. 38.3) приводит к уменьшению уровня сигнала на выходе усилителя, но сигнал воспроизводится без искажений. Большая утечка или короткое замыкание в этом конденсаторе обычно вносит изменения в режим транзистора по постоянному току. Эти изменения зависят от статических режимов предыдущих и последующих каскадов.

При поиске неисправности нужно помнить следующее.

1. Не делайте скоропалительных выводов на основе сравнения измерен­ного и номинального напряжений только в одной точке. Нужно запи­сать весь набор величин измеренных напряжений (например, на эмит­тере, базе и коллекторе транзистора в случае транзисторного каскада) и сравнить его с набором соответствующих номинальных напряжений.

2. При точных измерениях (для вольтметра с чувствительностью 20 кОм/В достижима точность 0,01 В) два одинаковых показания в разных контрольных точках в подавляющем большинстве случаев указывают на короткое замыкание между этими точками. Однако бывают и исключения, поэтому нужно выполнить все дальнейшие про­верки для окончательного вывода.


Особенности диагностики цифровых схем

В цифровых устройствах самой распространенной неисправностью явля­ется так называемое «залипание», когда на выводе ИС или в узле схемы постоянно действует уровень логического 0 («константный нуль») или ло­гической 1 («константная единица»). Возможны и другие неисправности, включая обрывы выводов ИС или короткое замыкание между проводни­ками печатной платы.

r38.8

Рис. 38.8.

Диагностика неисправностей в цифровых схемах осуществляется пу­тем подачи сигналов логического импульсного генератора на входы про­веряемого элемента и наблюдения воздействия этих сигналов на состо­яние выходов с помощью логического пробника. Для полной проверки логического элемента «проходится» вся его таблица истинности. Рассмотрим, например, цифровую схему на рис. 38.8. Сначала записываются логические состояния входов и выходов каждого логического элемента и сопоставляются с состояниями в таблице истинности. Подозрительный логический элемент тестируется с помощью генератора импульсов и логи­ческого пробника. Рассмотрим, например, логический элемент G1.На его входе 2 постоянно действует уровень логического 0. Для проверки эле­мента щуп генератора устанавливается на выводе 3 (один из двух входов элемента), а щуп пробника — на выводе 1 (выход элемента). Обращаясь к таблице истинности элемента ИЛИ-НЕ, мы видим, что если на одном из входов (вывод 2) этого элемента действует уровень логического 0, то уровень сигнала на его выходе изменяется при изменении логического со­стояния второго входа (вывод 3).

Таблица истинности элемента G1

Вывод 2

Вывод 3

Вывод 1

0 0

1 1

0

1

0

1

1

0 0

0

Например, если в исходном состоянии на выводе 3 действует логический 0, то на выходе элемента (вывод 1) присутствует логическая 1. Если теперь с помощью генератора изменить логическое состояние вывода 3 к логической 1, то уровень выходного сиг­нала изменится от 1 к 0, что и зарегистрирует пробник. Обратный резуль­тат наблюдается в том случае, когда в исходном состоянии на выводе 3 действует уровень логической 1. Аналогичные тесты можно применить к другим логическим элементам. При этих тестах нужно обязательно пользоваться таблицей истинности проверяемого логического элемента, потому что только в этом случае можно быть уверенным в правильности тестирования.

 

Особенности диагностики микропроцессорных систем

Диагностика неисправностей в микропроцессорной системе с шинной структурой имеет форму выборки последовательности адресов и данных, которые появляются на адресной шине и шине данных, и последующего сравнения их с хорошо известной последовательностью для работающей системы. Например, такая неисправность, как константный 0 на линии 3 (D3) шины данных, будет указываться постоянным логическим нулем на линии D3. Соответствующий листинг, называемый листингом состояния, получается с помощью логического анализатора. Типичный листинг со­стояния, отображаемый на экране монитора, показан на рис. 38.9. Как альтернатива может использоваться сигнатурный анализатор для сбора потока битов, называемого сигнатурой, в некотором узле схемы и сравнения его с эталонной сигнатурой. Различие этих сигнатур указывает на неисправность.

Листинг состояния микропроцессора

Рис. 38.9.

В данном видео рассказывается о компьютерном тестере для диагностики неисправностей персональных компьютеров типа IBM PC:

 

Добавить комментарий


Защитный код
Обновить